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ABSTRACT The thickness of mammalian tooth
enamel plays a prominent role in paleontology because it
correlates with diet, and thicker enamel protects against
tooth breakage and wear. Hominid evolutionary studies
have stressed the importance of this character for over 30
years, from the identification of “Ramapithecus” as an
early Miocene hominid, to the recent discovery that the
earliest hominids display molar enamel intermediate in
thickness between extant chimpanzees and Australopithe-
cus. Enamel thickness remains largely unexplored for
nonhominoid primate fossils, though there is significant
variation across modern species. Despite the importance
of enamel thickness variation to primate evolution, the
mechanisms underlying variation in this trait have not
yet been elucidated. We report here on the first quantita-
tive genetic analysis of primate enamel thickness, an
analysis based on 506 pedigreed baboons from a captive
breeding colony. Computed tomography analysis of 44 Pa-

pio mandibular molars shows a zone of sufficiently uni-
form enamel thickness on the lateral surface of the proto-
conid. With this knowledge, we developed a caliper metric
measurement protocol for use on baboon molars worn to
within this zone, enabling the collection of a data set large
enough for genetic analyses. Quantitative genetic analy-
ses show that a significant portion of the phenotypic vari-
ance in enamel thickness is due to the additive effects of
genes and is independent of sex and tooth size. Our models
predict that enamel thickness could rapidly track dietary
adaptive shifts through geological time, thus increasing
the potential for homoplasy in this character. These re-
sults have implications for analyses of hominoid enamel
thickness variation, and provide a foundation from which
to explore the evolution of this phenotype in the papionin
fossil record. Am J Phys Anthropol 124:223–233, 2004.
© 2004 Wiley-Liss, Inc.

Variation in enamel thickness is widely used in
the study of mammalian evolution and adaptation,
ranging from Rodentia (Flynn et al., 1987; Grayson
et al., 1990; Meng and Wyss, 1994) to Proboscidea
(Beden, 1980; Crochet et al., 1996). Primates are no
exception, though research on primate molar
enamel thickness has focused primarily on anthro-
poids (Dumont, 1995; Gantt, 1977; Kay, 1981; Mol-
nar and Gantt, 1977; Shellis et al., 1998; Ulhaas et
al., 1999), and particularly on hominoids (e.g., An-
drews and Martin, 1991; Beynon and Wood, 1986;
Grine and Martin, 1988; Kono, 2002; Macho and
Berner, 1993, 1994; Martin, 1985; Schwartz,
2000a,b; Schwartz et al., 1998). In anthropology,
enamel thickness variation in primates has widely
informed interpretative studies of function and mor-
phology, diet and adaptation, and phylogeny (e.g.,
Jolly, 1970; Kay, 1981; Martin, 1985; Simons and
Pilbeam, 1972; Strait et al., 1997; Szalay, 1972;
Wood, 1992, 1995). Historically, enamel thickness
played a prominent role in the rise and reconsider-
ation of “Ramapithecus” as a hominid (Simons and
Pilbeam, 1972). Today, enamel thickness remains

an important character in functional and phyloge-
netic assessments of the earliest hominids, Ardipi-
thecus ramidus, Australopithecus anamensis, Or-
rorin tugenensis, and Sahelanthropus tchadensis
(Andrews, 1995; Brunet et al., 2002; Leakey et al.,
1995; Senut et al., 2001; White et al., 1994). Very
few studies have investigated enamel thickness in
the nonhominoid primate fossil record (Benefit,
1987).
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Systematic quantification of molar enamel thick-
ness in anthropoid primates was first attempted by
Gantt (1977) and Molnar and Gantt (1977), followed
by Martin (1983, 1985), who focused on hominoids.
They sectioned cercopithecoid and hominoid molars
through the mesial cusps, and measured thickness
and areas on these sections. Since then, similar
methodologies based on the destructive sectioning of
teeth have been applied on ape and human material
(e.g., Beynon et al., 1998; Grine and Martin, 1988;
Macho and Berner, 1993; Schwartz, 2000b; Shellis
et al., 1998), and on some cercopithecid and other
primate molars (Dumont, 1995; Shellis et al., 1998;
Ulhaas et al., 1999). Other methods of investigating
enamel thickness include measuring thickness on
worn molars (Benefit, 1987; Kay, 1981), on natural
fractures (Beynon and Wood, 1986; Suwa et al.,
1996; White et al., 1994), on radiographs (e.g., Grine
et al., 2001; Harris et al., 2001; Molnar et al., 1993;
Sperber, 1985; Zilberman and Smith, 1992), by
three-dimensional digitizing coupled with enamel
decalcification (Kono et al., 2002; Kono-Takeuchi et
al., 1997), by ultrasonic pulse-echo (Huysmans and
Thijssen, 2000), by initial attempts with computed
tomography (CT) scanning (Conroy, 1991; Grine,
1991; Macho and Thackeray, 1992; Zonneveld and
Wind, 1985), and by use of more accurate CT-based
techniques (Kono, 2002; Schwartz et al., 1998; Spoor
et al., 1993).

These and other studies (cited below) suggest a
complex evolutionary pattern for enamel thickness,
with a possible dietary component of intertaxon
variation superimposed on allometric trends (Gantt,
1977; Kay, 1981; Shellis et al., 1998). Thin enamel is
considered to be advantageous in maintaining sharp
enamel crests that are supposedly good for shearing
(e.g., Kay, 1981), although such actual functional
effects remain to be demonstrated with hominoid
molars that lack well-defined phase 1 wear facets.
Thick enamel is likely an adaptation to resist abra-
sive wear (Molnar and Gantt, 1977; Teaford et al.,
1996) or to withstand higher masticatory loads
(Spears and Crompton, 1997; Spears and Macho,
1995), although the effectiveness of comparatively
thicker enamel in the latter may not be significant
(Macho and Spears, 1999). Though enamel thick-
ness is generally thought to be responsive to both of
these selective forces (Kay, 1981; Macho, 1995;
Shellis et al., 1998; Teaford and Ungar, 2000), there
is no clear understanding as to the relative impor-
tance of the two. The details of enamel thickness
patterning are only beginning to be documented
from a three-dimensional whole-crown perspective,
and available data suggest the additional existence
of a morphogenetic patterning of thickness not di-
rectly related to masticatory load but perhaps with
internal cusp topography (Kono et al., 2002). Empir-
ically, molar enamel thickness does appear to corre-
late with diet. Thin enamel is associated with softer
foodstuffs, and thicker enamel correlates with hard-

object feeding (Benefit, 1987; Dumont, 1995; Gantt,
1977; Kay, 1981; Ulhaas et al., 1999).

Despite the salience of enamel thickness in mod-
ern primate and hominoid evolutionary studies, no
attempts to elucidate the genetic and environmental
contributions to its variance have been made. The
purpose of the present paper is to determine the
relative contributions of selected factors underlying
population-level variation in the trait of molar
enamel thickness. The relative contributions of
tooth size, genetic effects, and nongenetic effects to
enamel thickness variation were estimated in cap-
tive, pedigreed baboons from the Southwest Foun-
dation for Biomedical Research, the first such esti-
mate in any mammal.

In order to assess the quantitative genetics of
molar enamel thickness, both large sample sizes
(�300) and accurate measures of thickness are
needed. The exact quantification of enamel thick-
ness based on sectioned molars, by necessity, has
been conducted on small sample sizes due to the
destructive procedure. Ideally, high-resolution CT
scans of molar teeth of individuals from model pop-
ulations are needed, but this is not possible at
present. We therefore took the alternative of devel-
oping a sufficiently accurate and reliable externally
based method of measuring molar enamel thickness
in baboons.

Some earlier studies of broad taxonomic variation
were based on nondestructive, externally measured
estimates of enamel thickness on worn occlusal sur-
faces (Benefit, 1987; Kay, 1981). Such an approach
necessitates a consideration of either external crown
and/or enamel-dentin junction (EDJ) surface orien-
tations. Figure 1 demonstrates how taking a width
measurement of an obliquely oriented object will
consistently yield imprecise overestimates. Kay
(1981) attempted a measurement of enamel thick-
ness tangential to the external surface. However, his
method has not been evaluated in terms of the ef-
fects of tooth wear, configuration of the external and
internal enamel surfaces, and/or measurement er-
ror.

Fig. 1. Diagram of cross section through mesial loph of a worn
baboon molar, demonstrating difference between occlusal and
radial enamel thickness.
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In the present paper, we first report on a protocol
for measuring radial enamel thickness on the lateral
crown faces of Papio mandibular molars, employing
a knowledge of internal tooth anatomy gained from
industrial computed tomography (CT) scans made
through a series of modern Papio molars. We dem-
onstrate the presence of a zone of relatively uniform
enamel thickness on the most buccal aspect of the
baboon protoconid as seen in CT scans, which enable
a sufficiently accurate measure of thickness on a
range of worn molars. In hominoid molars, enamel
thickness of the crown faces are less consistent, so
that the same method is not generally applicable.
We then measured radial enamel thickness of the
buccal protoconid face on adequately worn molars of
a large sample of captive, pedigreed baboons, to
document lateral enamel thickness in a large sam-
ple of baboon molars. These data provide the foun-
dation for the first-ever quantitative genetic analy-
sis of this phenotype.

MATERIALS

CT study sample

The CT study sample consisted of 44 molars from
31 individuals of Papio hamadryas spp. (14 males,
11 females, 3 juveniles, and 3 of unknown sex). The
mandibular specimens used for this study were from
the Cleveland Museum of Natural History and the
University of California at Berkeley’s Museum of
Vertebrate Zoology. CT scans of 34 unworn or
slightly worn mandibular molars were used for de-
termination of length and location of the region of
uniform thickness. CT scans of all 44 molars were
used to assess enamel thickness variation within the
sample. Antimeres were not included.

Quantitative genetic analysis sample

The Southwest Foundation for Biomedical Re-
search (SFBR) houses the world’s largest captive
breeding colony of baboons (�3,000), maintained in
pedigrees (with all mating opportunities controlled).
This pedigree structure, coupled with genetic
marker maps for �1,000 of the animals, make this
colony unique and important for the quantitative
genetic analysis of normal phenotypic variation in
primates (Rogers et al., 2000).

Using the enamel thickness measurement proto-
col outlined herein, data were obtained from high-
resolution plaster dental casts of 506 pedigreed ba-
boons (Papio hamadryas), with a female-to-male sex
ratio approximating 2:1, and ranging in age from
4.6–30 years. All procedures related to the treat-
ment of the baboons during this study were ap-
proved by the Institutional Animal Care and Use
Committee in accordance with the established
guidelines (National Research Council, 1996), and
are outlined in detail elsewhere (Hlusko et al.,
2002).

All pedigree data management and preparation
were accomplished using the computer package

PEDSYS (Dyke, 1996). The 506 animals from which
data were obtained were distributed across 11 ex-
tended pedigrees. The mean number of animals with
data per pedigree was 44, with these animals occu-
pying the lower two or three generations of each
pedigree. Genetic management of the colony, begun
over 20 years ago, allows for data collection from
noninbred animals. All nonfounder animals in this
study were the result of matings that were random
with respect to dental, skeletal, and developmental
phenotype.

METHODS
CT study and definition of ZUET

The mesial portion of each mandibular molar from
the CT study sample was CT-scanned using a mi-
crofocal X-ray industrial CT scanner (model TX225-
Actis, Tesco) at the University Museum, University
of Tokyo. Slice thickness was set at 50 �m, and
images were reconstructed in a 512 � 512 matrix
with a pixel size of 50 �m. Pixel size was calibrated
to an accuracy of ca. 0.1% by measuring an alumi-
num rod of known diameter (9.996 mm). Each tooth
was set so that multiple CT slices were taken par-
allel to a plane that bisects the “cone-like” buccal
protoconid face. From the series of sections, the one
that passed through the protoconid apex was chosen
for measurement. This section usually passes close
to, but not strictly through, the metaconid apex
(Fig. 2).

Because of the high resolution of our micro-CT
system, the CT value profile of the tissue interface
was steep, enabling accurate measurement of
enamel thickness. Measurement endpoints were de-
fined to subpixel resolution by means of the half-
maximum method (Schwartz et al., 1998; Spoor et

Fig. 2. CT scan through mesial loph of a baboon mandibular
molar used for assessment of ZUET. Buccal is to the right. See
text for details.
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al., 1993), with independent threshold values ex-
tracted each for the air-enamel and enamel-dentine
interfaces.

Visual inspection of the CT scans of the 34 unworn
or only slightly worn molars shows an extensive
region of the enamel on the buccal surface of the
protoconid to be fairly uniform in thickness. These
CT scans were then measured to determine and
quantitatively evaluate this zone of uniform enamel
thickness (ZUET).

The landmark for the inferior boundary of the
uniform region was defined as a point in line with
the most inferior aspect of the enamel-dentine junc-
tion (EDJ) of the intercuspal ridge on the CT section.
On CT scans, a line was drawn from the EDJ of the
intercuspal ridge to the buccal surface of the proto-
conid. This line was oriented approximately parallel
to the occlusal surface of the tooth crown (Fig. 3).
Though the ZUET generally extends inferiorly be-
yond this landmark, this is the most appropriate
inferior landmark, because it is readily observable
without the aid of CT scanning or removing the
molar from its alveolus.

Enamel thickness was measured superiorly to the
projected intercuspal ridge-EDJ line (Fig. 3, dis-
tance A) by taking 4–10 (depending on overall crown
size) evenly spaced (�0.20 mm) measurements.
Each thickness measurement approximated a line
perpendicular to the buccal slope of the crown,
thereby estimating radial enamel thickness, rather
than occlusal-view enamel thickness.

Generally for papionin molars, enamel is thinner
in the superiormost region of the protoconid. When
thickness measurements exceeded the projected in-
tercuspal ridge-EDJ line (Fig. 3, distance A) mea-
sure by �0.10 mm, the uniform region was deemed
to have ended (Fig. 3, distance B). For these 34
molars, the average number of measurements taken
for each tooth was 6.5, and the average standard
deviation 0.033 (range, 0.008–0.057). The mean dif-
ferences between the superiormost vs. middle mea-
surement and the middle versus inferiormost mea-
surement are �0.002 mm and 0.05 mm, respectively.
The latter difference is statistically significant in a

paired t-test (P � 0.01). These results demonstrate
that the zone is more uniform than the 0.1mm re-
striction applied, although a very slight decrease of
thickness appears to occur toward the lower half of
ZUET (see below for an evaluation of this effect). As
shown below, these small but significant differences
are within the range of measurement error for the
caliper metric protocol. Therefore, they are beyond
our current level of measurement precision, and do
not hinder the analysis of enamel thickness in this
study.

In order to estimate where the enamel starts to
thin and the region of uniform thickness ends, the
buccolingual width of the dentine was measured at
the most superior point of the region of uniform
thickness (Fig. 3, distance C). This measurement
translates into how much of the dentine needs to be
exposed in order to ensure that the region of uniform
thickness has been reached by tooth wear. The den-
tine exposure was then conservatively translated
into well-established wear stages, so that only teeth
apparently worn to the ZUET level would be in-
cluded in the analysis. Individuals from the popula-
tion with unusual molar wear were not included in
the study.

Caliper test methods

The caliper protocol was then developed and
tested, using casts of the mandibular molars of 46
baboons from the SFBR sample. Adjustable-jawed
calipers (Model NTD10-6�C, Mitutoyo) were used for
the collection of all caliper-measured enamel thick-
ness data used in these analyses.

This protocol is designed to measure enamel
thickness on the buccal surface of the protoconid of
worn Papio molars. Given the information from the
CT scans, the boundaries of ZUET were determined.
As shown in Figure 1, radial enamel thickness will
return a more accurate assessment of protoconid
enamel thickness than will occlusally measured
enamel thickness. Therefore, when measuring the
buccalmost aspect of the protoconid enamel, the cal-
ipers need to be oriented so that one of the jaws
aligns with the buccal surface of the protoconid (Fig.
4). The other jaw will align with the enamel-dentine
junction. The most difficult and most important as-
pect of this protocol is the orientation of the calipers.
Each measurement was taken three times, with 24
hours passing between each measurement.

Quantitative genetic analytical methods

Quantitative genetic analyses were performed on
the second molar data of the pedigreed sample pop-
ulation, as these were the largest data sets. Statis-
tical genetic analyses were conducted by means of a
maximum likelihood-based variance decomposition
approach implemented in the computer package SO-
LAR (Almasy and Blangero, 1998). In these analy-
ses, phenotypic variance

	�P
2)

Fig. 3. Diagram of cross section through mesial loph of an
unworn baboon molar, showing measurements used in assess-
ment of the ZUET.
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is partitioned into components corresponding to the
additive genetic

	�G
2 )

and environmental (i.e., nonadditive genetic)

	�E
2 )

effects. Because these components are additive, such
that

�P
2
�G

2 ��E
2 ,

we estimated the heritability, or proportion of phe-
notypic variance attributable to additive genetic ef-
fects, as

h2

�G

2

�P
2 .

Phenotypic variance attributable to nongenetic fac-
tors is estimated as e2 
 1 � h2. Additionally, we
estimated the mean effects of sex, age, mesiodistal
length, and mesial buccolingual width of the crown
on the enamel thickness value recorded for each
molar studied. Protocols for collecting length and
width data are described in detail in Hlusko et al.
(2002).

Significance of the maximum likelihood estimates
for heritability and other parameters was assessed
by means of likelihood ratio tests. Twice the differ-
ence of the maximum likelihoods of a general model
(in which all parameters were estimated) and a re-
stricted model (in which the value of a parameter to
be tested was held constant at some value, usually
zero) were compared. This difference is distributed
asymptotically approximately as either a 1⁄2:1⁄2 mix-
ture of 2 and a point mass at zero, for tests of
parameters such as h2 for which a value of zero in a
restricted model is at a boundary of the parameter
space, or as a 2 variate, for tests of covariates for
which zero is not a boundary value (Hopper and
Mathews, 1982). In both cases, degrees of freedom
are equal to the difference in the number of esti-

mated parameters in the two models (Boehnke et al.,
1987). However, in tests of parameters such as h2

whose values may be fixed at a boundary of their
parameter space in the null model, the appropriate
significance level is obtained by halving the P-value
(Boehnke et al., 1987).

RESULTS

Establishing the measurement protocol

In the CT study, we found that the length of ZUET
differs between first, second, and third molars.
ZUET is approximately 0.78 mm in length for first
molars (M1s), 1.44 mm for second molars (M2s), and
1.91 mm for third molars (M3s). See Table 1. The
average dentine exposure (Fig. 3, distance C) for M1s
is 0.77 mm, 0.95 mm for M2s, and 0.98 mm for M3s.

The values for the three molar positions are dif-
ferent because of the size differences between first,
second, and third molars. However, all of these mea-
surements translate into the same wear stage, e.g.,
stage 4 of Benefit (1987). Therefore, buccal proto-
conid radial enamel thickness measured on molars
exposing this much or more dentine is expected to be
within ZUET. Meanwhile, in relatively worn molars,
enamel at the intercuspal ridge must be preserved
in order to ensure that the buccal surface of the
protoconid is still within the region of uniform thick-
ness. Consequently, molars that can be used with
this protocol must roughly fall within wear stages 4
and 7 as defined by Benefit (1987, 1993), and wear
stages as scored from 3–6 by Delson (1973), includ-
ing grade C and part of D.

Using these criteria for the caliper metric, we
found that the error between repeated measure-
ments of dental casts was between 2.9–5.1%, with
an average of 3.98% (Table 2).

In order to assess the accuracy of the caliper
method, we compared CT scan data with caliper
data. Most of the molars used for the CT scan study
were unworn or only slightly worn, and therefore
enamel thickness could not be measured with cali-
pers. There were five molars CT-scanned that were
worn enough to measure with calipers. The discrep-
ancy between caliper and CT-derived enamel thick-
ness data ranged to approximately 0.13 mm (Table
3). Since the caliper method tends to overestimate
fairly consistently, the precision of the caliper
method is deemed reliable. The agreement between
the caliper data and the CT scan data is not prob-
lematic so long as only one type of data collection
method is employed for comparative enamel thick-
ness studies.

Enamel thickness results

The distribution of mandibular molar enamel
thickness values in the large pedigreed sample of
baboons demonstrates that considerable population-
level variation is present in this population. Stan-
dard coefficients of variation (CVs) for enamel thick-
ness center around 10. As noted by Polly (1998), CVs

Fig. 4. Diagram of cross section through mesial loph of a worn
baboon molar, showing orientation of adjustable-jawed calipers
used for measurement of the ZUET.
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can be biased by measurement error when the trait
is small, such as enamel thickness. Corrected CVs
were also calculated as

CVcorr
100��Vall�Vme

X �
(modified from Polly, 1998), where Vall is the vari-
ance for the trait, Vme is the variance of the mea-
surement error, and X is the mean of the trait in this
population. The corrected CVs range between 7.10–
10.05.

Another approach suggested for comparing rela-
tive variance between traits of different magnitudes
is to regress the standard deviation against the
mean (Polly, 1998). However, since the effect of a
constant measurement error to the standard devia-
tion is not linear, the appropriate regression would
be variance against the square of the mean. The
intercept would then represent the error variance,
and the slope the square of the error-free CV. When
the three enamel thickness measures of the com-
bined sex sample are examined in this way, we es-
timate measurement error to be 0.09 and error-free
CV to be 6.8.

There is no consistent pattern of sexual dimor-
phism in absolute enamel thickness, but enamel
thicknesses scaled with linear size measurements
are systematically dimorphic, with females having
relatively thicker enamel than males (Table 4). This
dimorphism is reduced when the square root of the
two-dimensional occlusal view area of the protoconid
is used as a scaling factor (Table 4).

Our results also show that baboon molar enamel
thickness has significant metameric variation.
Enamel increases in absolute thickness in the more
distal molars (Table 5). But when enamel thickness
is scaled with linear measures of molar crown size,
the metameric pattern is reversed such that first
molars have relatively thicker enamel than second
molars, and the pattern between second and third
molars is not consistent (Table 5). The CT study also

demonstrates this same metameric relationship in
absolute enamel thickness (Table 6), though none of
the differences between the means in these small CT
samples are significantly different (P � 0.05).

Quantitative genetic results

Quantitative genetic analyses show that absolute
enamel thickness for second mandibular molars is
heritable. A significant proportion of the phenotypic
variance in this trait is attributable to the additive
effects of genes: for RM2,

hr
2
0.44,

and LM2,

hr
2
0.32

(Table 7). With the exception of a significant mean
effect of age on RM2 (P 
 0.046), none of the tested
covariates, including tooth length and width (P �
0.10), contributed significantly to the likelihoods of
the genetic models for enamel thickness of the sec-
ond mandibular molars in these baboons. And, in
the case of RM2, the contribution of age to the vari-
ance in enamel thickness of this tooth was small
(approximately 4%).

DISCUSSION

This is the largest assessment of enamel thickness
variation in primates to date, and the first quanti-
tative genetic analysis of this trait in any mammal.
Our results show that mandibular molar enamel
thickness does vary in this population. Depending
on the method used to assess relative variance,
enamel thickness in the pedigreed population either
exceeds what would be expected or falls within the
range of variation seen for other dental linear di-
mensions (Plavcan, 1993). We found that the source
of this observed enamel thickness variation has a
large genetic component.

Our results show that absolute enamel thickness
for second mandibular molars is heritable. Though
the proportion of the phenotypic variance attribut-
able to the effects of genes (i.e., the heritability es-
timate) may vary across populations due to popula-
tion-specific factors that affect the genetic or
environmental components to the variance, the fact
of a significant genetic contribution is consistent
(Wang et al., 2001). Thus the detection and charac-
terization of a significant genetic component for
enamel thickness variation are of considerably more
interest than the actual heritability point estimates
themselves.

TABLE 1. Length and location of zone of uniform enamel thickness1

Tooth N
Length of uniform

region Min Max St dev
Dentine
exposure Min Max

St
dev

M1 7 0.78 0.47 1.33 0.31 0.77 0.64 0.9 0.11
M2 9 1.44 0.93 2.18 0.36 0.95 0.28 1.53 0.37
M3 18 1.91 1.17 2.85 0.55 0.98 0.4 1.87 0.37

1 M, molar; 1, 2, 3, position in molar row; St dev, standard deviation; Min, minimum measurement; Max, maximum measurement.

TABLE 2. Measurement error test1

RM1 RM2 RM3 LM1 LM2 LM3

n 22 38 10 23 36 9
Avg measurement 1.18 1.34 1.39 1.22 1.37 1.39
Absolute avg error 0.06 0.05 0.05 0.06 0.05 0.04
% error 5.1 3.7 3.6 4.9 3.7 2.9

1 R, right; L, left; M, molar; 1, 2, 3, position in molar row; Avg,
average; % error, calculated as absolute average error divided by
average measurement; measurements are in millimeters.
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Due to the nature of tooth development and min-
eralization, age in these models acts as a proxy for
wear, indicating that wear does affect our caliper
protocol to a small extent for RM2. In our polygenic
models, age is included as a parameter for RM2 only.
No covariates were found to be significant for LM2.
This is consistent with our evaluation of minor di-
rectional differences in enamel thickness within
ZUET. However, the covariate effect for RM2 is
small and only nominally significant. We consider
the contribution of age (or wear) to the total pheno-
typic variance for this tooth to be modest.

Similarly, when the additive effects of genes on
variation in enamel thickness are accounted for, nei-
ther the effects of molar crown size (crown length
and width) nor of sex on enamel thickness are de-
tectable in this sample of pedigreed baboons. While
our results suggest the independence of absolute
enamel thickness from crown length and width in
these pedigrees, additional studies will be needed to
confirm this independence and to determine its gen-
eralizability to other populations and species. If
these initial indications are borne out by subsequent
study, then we would conclude that different genes
or suites of genes (and perhaps environmental fac-
tors) influence the development of enamel thickness
and overall tooth size.

Although absolute enamel thickness is not sys-
tematically sexually dimorphic, estimates of relative
enamel thickness based on linear measurements of
crown size are highly dimorphic, with females hav-
ing relatively thicker enamel than males (Table 4).
This is because sex plays a significant role in con-
tributing to phenotypic variance of molar crown size
in this baboon population (Hlusko et al., 2002).

We also found that significant metameric varia-
tion exists in enamel thickness in this pedigreed
baboon sample. The pattern of this variation de-
pends on the use and type of scaling factor em-
ployed. Coupling the metameric variation with the
sexual dimorphism of scaled enamel thickness, our
results suggest that pooling data from different mo-
lar positions and unsexed individuals might con-
found intraspecific variation with taxonomic-level
variation in systematic and evolutionary studies, as
cautioned previously (Macho and Berner, 1993).

One way to mitigate the potential complications
outlined above would be to use a scaling measure
that is not influenced by sex and/or position. An
ideal scaling measure would be one that is associ-
ated isometrically with enamel thickness, either

TABLE 4. Absolute and scaled enamel thickness data for left
first, second, and third molars from pedigreed sample1

Measure N Mean St Dv CV
Corrected

CV

Males and females
M1 195 1.21 0.123 10.17 9.42
M2 327 1.34 0.128 9.55 8.91
M3 104 1.37 0.131 9.56 8.95
M1/MD length 158 0.117 0.012 10.26
M2/MD length 287 0.109 0.012 11.01
M3/MD length 67 0.090 0.012 13.33
M1/BL width 154 0.170 0.018 10.59
M2/BL width 284 0.148 0.016 10.81
M3/BL width 90 0.142 0.017 11.97
M1/Tri length 117 0.218 0.022 10.09
M2/Tri length 205 0.202 0.022 10.89
M3/Tri length 53 0.196 0.024 12.24
M1/√ProtArea 115 0.325 0.036 11.08
M2/√ProtArea 214 0.315 0.032 10.16
M3/√ProtArea 46 0.320 0.034 10.63

Females
M1 172 1.21 0.123 10.17 9.42
M2** 242 1.33 0.127 9.55 8.89
M3 64 1.36 0.144 10.59 10.03
M1/MD length* 139 0.118 0.012 10.17
M2/MD length* 212 0.112 0.012 10.71
M3/MD length* 42 0.093 0.012 12.90
M1/BL width* 137 0.172 0.018 10.47
M2/BL width* 211 0.150 0.016 10.67
M3/BL width* 56 0.146 0.018 12.33
M1/Tri length** 102 0.219 0.022 10.05
M2/Tri length* 151 0.206 0.022 10.68
M3/Tri length* 32 0.203 0.024 11.82
M1/√ProtArea 100 0.328 0.037 11.28
M2/√ProtArea** 164 0.318 0.032 10.06
M3/√ProtArea 33 0.322 0.036 11.18

Males
M1 23 1.23 0.132 10.73 10.05
M2** 85 1.37 0.129 9.42 8.79
M3 40 1.39 0.109 7.84 7.10
M1/MD length* 19 0.109 0.010 9.17
M2/MD length* 75 0.103 0.009 8.74
M3/MD length* 25 0.085 0.010 11.76
M1/BL width** 17 0.157 0.016 10.19
M2/BL width* 73 0.141 0.014 9.93
M3/BL width* 34 0.134 0.012 8.96
M1/Tri length** 15 0.206 0.016 7.77
M2/Tri length* 54 0.192 0.018 9.37
M3/Tri length* 21 0.185 0.020 10.81
M1/√ProtArea 15 0.309 0.030 9.71
M2/√ProtArea** 50 0.306 0.029 9.48
M3/√ProtArea 13 0.313 0.027 8.63

1 Right-side data have same relationships. Top third of table
includes males and females. All measurements reported in milli-
meters.
*Male and female differences significant at P � 0.01, with vari-
ances assumed equal.
**Male and female differences significant at P � 0.05, with vari-
ances assumed equal. CV, coefficient of variation; M, mandibular
molar; 1, 2, 3, position in tooth row; MD, mesiodistal length; BL,
buccolingual width; Tri, trigonid mesiodistal length; √ProtArea,
square root of two-dimensional area of the occlusal view of the
protoconid.

TABLE 3. Comparison of caliper and CT scan enamel thickness measurements of same specimen1

Specimen number Tooth Caliper measurement CT measurement Difference

CMNH B1368 M1 1.23 1.107 0.123
MVZ 122416 M2 1.24 1.117 0.124
MVZ 154147 M2 1.14 1.119 0.021
MVZ 106562 M2 1.35 1.213 0.137
MVZ 154145 M2 1.3 1.330 �0.030

1 M, molar; 1, 2, 3, position in molar row; measurements are in millimeters.
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morphogenetically or by functional constraints. We
find that absolute enamel thickness scaled with the
square root of the two-dimensional occlusal view
area of the protoconid is only weakly sexually dimor-
phic, and exhibits few to no metameric differences in
this pedigreed baboon population. Of all of the scal-
ing methods used here, this is the most appropriate
to use in mixed-sex and/or mixed-position samples of
baboons. However, we note that this is an empirical
observation without a known underlying basis, so its
applicability to other taxa remains to be investi-
gated.

Narrow-sense heritability estimates (the esti-
mates of the proportion of the phenotypic variance
due to the additive effects of genes) have implica-
tions for finding genes for traits such as enamel
thickness. Statistical power to detect and localize
quantitative trait loci (QTLs) influencing variation
in enamel thickness, or any other quantitative trait,
is largely a function of the QTL-specific heritability
(i.e., the proportion of variance in the trait attribut-
able to the effect of the QTL), for which the herita-
bility estimate described in this report provides the
upper bound. Demonstrating that enamel thickness
variation is significantly heritable is a prerequisite
to searching for the genes responsible for that heri-
table component. A whole-genome linkage map is
available for this population of baboons (Rogers et
al., 2000), and the majority of animals for which we
have enamel thickness measures were genotyped at
the marker loci that comprise this map. We are
currently undertaking a whole-genome linkage
screen (Rogers et al., 1999) for enamel thickness
variation.

To date, both the genes that determine variation
in enamel thickness and the mechanisms by which
they do so are unknown. Enamel formation is a
highly heterogeneous process involving proteins

from at least six different genes (including ameloge-
nin, enamelin, and ameloblastin) (Robinson et al.,
1998). Enamel pathologies such as amelogenesis im-
perfecta (AI) demonstrate the important role these
genes play in enamel mineralization (Robinson et
al., 1998). Several studies provide suggestive evi-
dence that enamel thickness may be determined in
part by sex-linked genetic effects. For example, sex
chromosome polysomy (having an additional X or Y
chromosome) in humans results in thicker enamel
than is seen in controls (Alvesalo et al., 1985, 1987,
1991), whereas X monosomy in humans results in
thinner enamel (Alvesalo and Tammisalo, 1981;
Townsend et al., 1984). These sex-linked effects
were proposed to have had roles in the evolution of
hominid enamel thickness (Wood, 1995), and there
is some limited genetic evidence to support this (Fin-
cham et al., 1991).

However, though some versions of AI are sex-
linked, most enamel genetic defects exhibit patterns
of inheritance consistent with the localization of ma-
jor loci on autosomes (Bell et al., 2001; Clark and
Clark, 1933; Hart et al., 1997; Wright et al., 1993,
1996). It is also unknown whether the proteins nec-
essary for enamel mineralization also determine ul-
timate enamel thickness (Robinson et al., 1998). Ev-
idence indicating that enamel thickness is not
determined by the sex chromosomes is building,
such as the autosomal nature of the many patholo-
gies, the noninvolvement of sex as a covariate in the
quantitative genetic analyses of variation in baboon
enamel thickness, and the nondimorphic character-
istic of nonpathological enamel thickness in humans
(Alvesalo and Tammisalo, 1981; Harris et al., 2001).
Enamel thickness may be determined to some de-
gree by homeobox genes that control earlier morpho-
genesis. Lezot et al. (2000) found that Dlx2 (a mem-
ber of the distalless homeobox gene family)
expression in the later stages of incisor development
in mice is inversely related to enamel thickness.
Gene expression studies such as these help identify
genes involved in enamel formation. As described
above, Dlx2 and the enamel matrix proteins are
considered to be candidates for determining varia-
tion in enamel thickness.

This review of the known genetics of enamel de-
velopment provides a backdrop for our quantitative
genetic analysis. It is widely acknowledged that the
genetic mechanisms needed to produce an organ are
not necessarily the same ones that determine its
normal population-level variation. Because selection
operates on populations, we need to understand the
genetic and nongenetic factors that produce normal
variation in order to reconstruct an integrated geno-
and phenotypic evolutionary history (Jernvall,
2000).

Quantitative genetics is based on the principle
that the degree to which relatives are similar phe-
notypically is related to the genetic variation they
have in common (as opposed to random environmen-
tal effects; Falconer, 1989; Lynch and Walsh, 1998).

TABLE 5. Metameric variation in absolute and relative enamel
thickness measurements from pedigreed population1

No. of
pairs Significance

%difference
between
means

Direction
of effect

ET
M1 vs. M2 163 0.00 10–11 �
M2 vs. M3 84 0.00 5–6 �

ET/√P
M1 vs. M2 97 0.03 n.s. n.s.
M2 vs. M3 41 0.00 4–5 �

ET/MD
M1 vs. M2 130 0.00 5 �
M2 vs. M3 52 0.00 15–17 �

ET/BL
M1 vs. M2 125 0.00 12–13 �
M2 vs. M3 69 0.41 n.s. n.s.

ET/Tri
M1 vs. M2 97 0.00 6–7 �
M2 vs. M3 40 0.66 n.s. n.s.

1 ET, enamel thickness; MD, mesiodistal length; BL, buccolingual
width; Tri, trigonid mesiodistal length; √P, square root of two-
dimensional occlusal view area of protoconid; M, mandibular
molar; 1, 2, 3, position in tooth row.
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Quantitative genetic analyses therefore approach
developmental questions from a direction opposite
that of gene expression studies. We quantify adult
phenotypic variation and model the underlying ge-
netic and nongenetic effects statistically. Modern
quantitative genetic analyses models estimate the
proportions that different sources of variance con-
tribute to the total phenotypic variance (Almasy and
Blangero, 1998), including nongenetic and genetic
factors (such as diet and/or different alleles), and
genetic and nongenetic covariance with other phe-
notypes (such as tooth size or sex).

Modeling experiments show that the minor mod-
ification of relatively well-known developmental
pathways can produce known morphological varia-
tion between taxa as diverse as mice and voles
(Salazar-Cuidad and Jernvall, 2002), demonstrating
that any advance in understanding the development
of one organism greatly enhances our understanding
of others, especially for taxa in the same order.
Therefore, understanding the genetics and evolution
of enamel thickness variation in baboons helps to
clarify the evolution of enamel thickness in other
primate taxa, including humans. Additionally, the
mechanisms underlying population-level variation
were demonstrated to be directly relevant to diver-
sity at higher taxonomic levels (Jernvall, 2000; Shu-
bin, 2002; Stern, 2000). One of our aims is to under-
stand the relative contributions selected factors
have on enamel thickness variation across the molar
crown as well as the entire dentition. The quantita-
tive genetic analysis of enamel thickness variation
in baboons reported here represents a significant
step towards achieving this larger goal. However, at
this point in time it is premature to speculate on
how the results presented here will relate to varia-
tion in other regions of the dentition, given that we

still have a very limited understanding of the mech-
anisms that ultimately determine enamel thickness
variation. Only recently have we started to gain a
fuller understanding of enamel thickness variation
in three dimensions, spanning the entire molar
crown (Kono et al., 2002).

Heritability estimates may also provide insights
into the sensitivity of such traits to selective pres-
sures. Assuming continuity in the relative additive
genetic contribution to the variance in a trait (i.e.,
the heritability) between diachronic populations,
the potential responsiveness of that trait to selection
(natural and artificial) can be modeled (Lande,
1976). Using the model of Lande (1976), the baboon
population mean for M2 enamel thickness could the-
oretically double (assuming h2 
 0.35 and � 
 0.144
remain constant) in approximately 50,000 genera-
tions (or �250,000 years if a generation is estimated
to be 5 years, the age at which P. h. hamadryas
females reach sexual maturity; Melnick and Pearl,
1987), with a culling of less than 4 individuals in
10,000 each generation. Actual selection would have
been more complex than this simple model, but it is
inescapable that given heritabilities similar to what
we observed here, large shifts in enamel thickness
could result from moderate or low selective pres-
sures over evolutionarily short periods.

Our assessment of the contribution of the additive
genetic component of baboon molar enamel thick-
ness predicts common parallel evolution (ho-
moplasy) in this character. We report significant
sequential molar variation within an individual (i.e.,
metameric variation) and a potentially confounding
relationship with sex when scaled using linear mea-
surements. Therefore, when used uncritically,
enamel thickness has the potential to confound
rather than to clarify phylogenetic studies of higher
primates. Though studies of diachronic change in
primate enamel thickness are highly sensitive to
these factors, informative phylogenetic signals can
be revealed when these concerns are taken into ac-
count. Further study of the underlying genetics of
enamel thickness patterns will provide additional
guidelines for the phylogenetic evaluation of enamel
thickness in studies of primates, including early
hominids.
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