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14.1 Introduction

From the size and shape of teeth we can learn much about an animal’s diet,
gain some insight as to how it interacted with its conspecifics and environ-
ment, and draw conclusions about its phylogenetic placement. Consequently,
primate dental variation has been the focus of an immense amount of research
(as evidenced by this volume). These adaptive and phylogenetic scenarios rely
on the assumption that variation in the dental phenotype is heritable, or rather,
that this variation can be passed on from generation to generation as selection
filters through the available phenotypic variance.

In this chapter, we discuss the history of research that tests this hypothesis
through quantitative genetic analyses. We will focus attention on analyses of
crown morphology with the aim of summarizing what is currently known and
unknown about the extent to which dental variation is influenced by genetic
factors. And last, we discuss two directions through which quantitative genetics
will further enhance our understanding of the evolution of our ancestors and
closest relatives.

14.2 Quantitative genetics

Quantitative genetics is concerned with the inheritance of those dif-
ferences between individuals that are of degree rather than of kind,
quantitative rather than qualitative. These are the individual differ-
ences which, as Darwin wrote, “afford materials for natural selection
to act on and accumulate . . .” An understanding of the inheritance
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of these differences is thus of fundamental significance in the study
of evolution and in the application of genetics to animal and plant
breeding. (Falconer, 1989, p. 1)

The theories and methods of quantitative genetics extended Gregor Mendel’s
principles of inheritance – originally adduced from the study of the transmission
of qualitative traits – to the analysis of quantitative, or continuously varying,
traits in populations. This extension took advantage of theoretical developments
in two nascent fields of scientific inquiry: the inheritance of measurements, or
biometry, introduced by Francis Galton in the late 1800s, and the genetics of
populations, introduced by a number of scientists following the rediscovery of
Mendel’s work in the early 1900s (Falconer, 1989; Lynch and Walsh, 1998;
Provine, 1971). The theoretical basis for quantitative genetics was advanced,
coincident with much of inferential statistics, by the early 1920s in the works
of Fisher (1918), Haldane (reviewed in 1932), and Wright (1921). Since its
formulation, the theory of quantitative genetics primarily has been applied to
predicting the genetic properties of populations conditional on the properties of
genes, predicting the quantitative outcomes of breeding strategies, and predict-
ing evolutionary change in quantitative traits: conditional, real, or hypothesized
genetic properties in agricultural and experimental populations of animals and
plants (Falconer, 1989). In the last few decades, it has been extended to the
detection, characterization, localization, and identification of genes influencing
quantitative variation in traits of basic, evolutionary, and biomedical importance
in humans and non-human primates as well (Rogers et al., 1999).

At least three general premises are fundamental to much of the quantitative
genetics work currently underway. The first is that the inheritance of quanti-
tative differences (and, similarities) is mediated by the Mendelian segregation
of genes at many loci. The second premise is the common observation of a
greater similarity in measurements for quantitative traits in samples of closely
related individuals than in samples of more distantly related individuals. This
is explained, in part, by the fact that the former share more genes than the
latter. The third premise is that environmental (i.e. non-inherited) factors also
contribute to the pattern of observed quantitative differences in traits within a
population. Consequently, a common goal of genetic analyses is to assess the
relative importance of genotype versus environment to the observed variation
in the trait of interest. According to basic quantitative genetic theory, the over-
all phenotypic, or anatomical variance (σ 2

P ) may be decomposed into variance
due to the effects of genes (σ 2

G) and variance due to “environment” (σ 2
E ), such

that:

σ 2
P = σ 2

G + σ 2
E (14.1)
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Given this relationship, an estimate of the heritability (h2), or the proportion of
the total phenotypic variance accounted for by genetic effects, is:

h2 = σ 2
G

σ 2
P

(14.2)

Dental anthropologists and researchers from other disciplines have employed
a variety of quantitative genetic approaches and study designs (sampling and
analytical strategies) to determine the relative importance of genes and envi-
ronmental factors to quantitative variation in dental traits; all of them require
quantitative data from samples of related individuals, e.g. twins, sibling pairs,
sibships, nuclear families, and extended families, etc. All other things being
equal, the greater the number and variety of relative pairs in a sample, the
greater the statistical power to detect and estimate the effects of genes and envi-
ronmental factors on quantitative variation in a trait. This is simply a matter of
information available for analysis, i.e. sibships provide more information than
sibling pairs, and extended families provide more than nuclear families, etc.
However, in quantitative genetics, different research questions/hypotheses may
require different study designs, and different study designs may require differ-
ent analytical approaches (Blangero, 2004). Further, the genealogical structure
of anthropologically relevant samples (or of samples typically available to den-
tal anthropologists) can influence the kinds of questions that can be addressed
and, consequently, the analytical approaches employed.

We will briefly summarize the history of the use of some of these techniques to
address questions of interest to dental anthropologists. Although we categorize
these studies into “early,” “middle,” and “later” years, the reader should realize
that the breaks between these categories are somewhat arbitrary.

14.3 The early years (1920s–1950s)

The earliest studies exploring genetic contributions to dental variation utilized
twin, sibling, and parent–offspring relationships, and were concerned primarily
with patterns of resemblance and inheritance for dental caries and orthodontic
disorders (e.g. Bachrach and Young, 1927; Moore and Hughes, 1942). With the
exception of studies exploring the susceptibility to dental caries in inbred rat
populations (Hunt et al., 1944; Rosen et al., 1961), dental quantitative genetics
research in the 1940s and 1950s was dominated by the human monozygotic
(MZ) and dizygotic (DZ) twin study model. Investigations of tooth size and
occlusion (Lundström, 1948), date of eruption (Hatton, 1955), and molar cusp
variation (Ludwig, 1957) from this period established the practice of variance
comparison between the two twin types, consistently demonstrating greater
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variability for dental traits of DZ twins relative to that of MZ twins. The greater
concordance between MZ twins and, in general, the high degree of resemblance
between related individuals reported in these studies, provides some of the
earliest evidence for genetic inheritance of dental variation and the foundation
for all subsequent work.

14.4 The middle years (1950s–1970s)

During the 1950s, 1960s, and 1970s, genetic contributions to dental variation
were inferred mainly through studies of inter-populational differences, famil-
ial aggregation, and relative pair correlations. Results and observations from
the first two classes of study provided circumstantial evidence for heritability,
while those from the third category – e.g. comparison of intra-pair variance
ratios between twin types, simple measurements of concordance and correla-
tion in twins, the regression and correlation of parents and offspring, and the
correlations between full and half siblings – provided improved estimates of
the magnitude of the effects of genes on the traits under study. We discuss
this research by phenotype, i.e. caries, tooth size, Carabelli’s cusp, etc. It is
important to note that, as seen in the early years, work from this period focused
almost completely on humans. The non-human primate studies by Sirianni and
Swindler (1973, 1974) (discussed below) are the few exceptions to this trend.

14.4.1 Caries and occlusion

Our review focuses on crown size and shape; however, it is important to note
that quantitative genetic analyses of dental variation continued to demonstrate
a genetic contribution to dental caries susceptibility (e.g. Finn and Caldwell,
1963; Horowitz et al., 1958b). Assessing the degree to which intra-pair variance
in DZ twins exceeded the variance in MZ twins provided a heritability estimate
of 0.85 (Goodman et al., 1959). However, the observation that both twin types
had a higher concordance compared to the controls indicated a significant envi-
ronmental influence on caries experience (Mansbridge, 1959).

Research on occlusion suggested that despite observed genetic variability,
environmental factors are more important among families for traits such as
overjet, overbite, molar relationship, crowding, and rotations, and as such,
occlusal/dental arch variation has lower heritability estimates than does tooth
crown size (Bowden and Goose, 1968; Harris and Smith 1980; Lee and Goose,
1982, but see the latter for contrasting estimation for overjet). This importance
of environmental contributions to the phenotypic variance will be addressed in
detail later.
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14.4.2 Tooth and cusp dimensions

Numerous researchers reported evidence for a genetic contribution to tooth
size, i.e. linear measurements of crown mesiodistal and buccolingual lengths.
Studies of tooth size incorporating familial relationships in the house mouse
(Bader, 1965; Bader and Lehmann, 1965) preceded human research for this
trait, introducing the calculation of heritability from coefficients of variance
derived from population and sibling comparisons. Numerous human family
studies that followed demonstrated that most of the tooth size dimensions could
be attributed to additive genetic effects (Bowden and Goose, 1969; El-Nofely
and Tawfik, 1995; Goose, 1968; Niswander and Chung, 1965; Townsend and
Brown, 1978a, 1978b). Correlations between family members, including twin,
sibling, parent–child and cousin, showed a significant genetic basis for crown
size, with heritability estimates falling between 0.80 and 0.90 (Garn et al.,
1968). Data for deciduous teeth from an Aboriginal population agreed with
these high estimates of genetic variability in tooth size (Townsend, 1980).

Interestingly though, researchers detected patterned differences in heritability
among linear metric phenotypes. A full sib correlation comparison estimated
higher heritabilities for labiolingual compared to mesiodistal dimensions in 13
of 16 possible comparisons, suggesting a greater genetic factor for the former
set of dimensions (Alvesalo and Tigerstedt, 1974). Additionally, heritability of
inter-cuspal distances was found to be less than that for crown diameters of
maxillary premolar teeth (Townsend, 1985). Another study found that variation
in molar cusp size suggested little difference between MZ and DZ cusp area
variance, and hence, a relatively low heritability (Biggerstaff, 1975, 1976).
These differences in heritability were thought to possibly represent differing
genetic control, with implications for the evolution of the primate dentition.

Multivariate analyses of linear metrics provided additional insight to the
genetic contributions to tooth size. Factor analysis demonstrated that three
common factors could collectively describe the 56 dimensions of 28 permanent
teeth and account for more than one half of total variance of these measurements
(Potter et al., 1968).

Analyses of size variation in the anterior dentition suggested that genetic
control in the various tooth categories differs. In a sibling study that explored
the genetic involvement in specific components of occlusion characteristics,
the highest degree of correlation was found in incisor width, which suggests
stronger genetic involvement for this tooth dimension (Chung and Niswander,
1975). The presence of a genetic component for overall tooth size was indicated
in an analysis of variance and concordance in a study of three sets of triplets
(Menezes et al., 1974). A study of the maxillary and mandibular permanent
anterior teeth in MZ and DZ twins demonstrated a greater genetic influence for
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the incisors than the canines (Horowitz et al., 1958a; Osborne et al., 1958). Cross
twin analysis also indicated that the anterior dentition might be under genetic
control in terms of both general tooth size and adjacent tooth size (Osborne
et al., 1958). Interestingly, intra-pair variances of mesiodistal crown diameters
of deciduous anterior teeth showed high genetic variability in canines and, to a
lesser degree, central incisors (Di Salvo et al., 1972).

A variety of dental traits other than tooth and cusp dimensions were also
explored using quantitative genetic analyses. For example, tooth width of the
anterior teeth (Lundström, 1964), mesial ridge counts (although only at a signifi-
cant level in the maxillary second premolar) (Gilmore, 1968), and intra-alveolar
development of the crown and root of permanent mandibular canines, pre-
molars, and first and second molars (Green and Aszkler, 1970).

14.4.3 Morphological traits

The standardization of scoring for morphological traits (Dahlberg, 1956) pro-
vided a significant number of dental phenotypes that were also analyzed using
quantitative genetic approaches during this time period. Heritability estimates
were generally found to be lower for these phenotypes compared to linear
metrics. The dichotomization of continuously variable traits inherent in the
standardized scoring procedure typically employed in these analyses results in
the loss of a significant amount of descriptive power, and therefore may account
for these lower heritability estimates.

Carabelli’s cusp is perhaps the most “famous” of these morphologies
(Figure 14.1), and it was the subject of considerable genetic analysis. Pop-
ulation studies used genetic frequencies of Carabelli’s trait to test hereditary
models (Turner, 1967) and describe inter-group variation (Scott, 1980). In sib-
ling studies, the frequency of Carabelli’s trait in the deciduous and permanent
dentition was found to be higher for the siblings of individuals with the char-
acter than for siblings from the general population, suggesting some evidence
for a genetic basis (Garn et al., 1966). Twin research found that concordance
of the Carabelli’s trait is generally higher in MZ than DZ twins, with heritabil-
ity estimates as high as 0.91 (Skrinjaric et al., 1985). However, this was not a
ubiquitous conclusion. A separate study found relatively low MZ concordance,
and that concordance sometimes differed enough between antimeres to sug-
gest separate genetic factors for each side of the dentition (Biggerstaff, 1973).
Quantitative analysis by tetrachoric correlation of 14 non-metric characters,
including Carabelli’s trait, also indicated low genetic variability (Mizoguchi,
1977).
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Figure 14.1 Top panel shows expression of the cingular remnant Carabelli’s cusp on
an upper left third molar of a 2.5 million year old hominid from the Omo, Ethiopia
(specimen number L 50–2). The bottom panel shows expression of the cingular
remnant in the maxillary molar of an extant baboon (Papio hamadryas).

Family studies employed in an attempt to establish the mode of inheritance of
Carabelli’s trait, shoveling of incisors, maxillary molar cusp number, mandibu-
lar cusp number, and fissure patterns suggested that these traits are continuous
and not discrete; they are, therefore, likely to be inherited in a multifactorial way
(Goose and Lee, 1971; Lee and Goose, 1972). However, reducing Carabelli’s
trait into fewer categories, typically employed by dental anthropologists
(Turner et al., 1991), resulted in high sibling similarity with values of the
coefficient of contingency approximating 0.50 (Garn et al., 1966). A separate
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analysis of variation in expression of Carabelli’s trait in sib pairs reported no
correlation, suggesting that it is not due to genetic factors (Alvesalo et al.,
1975). In addition to Carabelli’s cusp, other phenotypes such as shovel form,
molar cusp number, and groove pattern were shown to generally have low but
positive within-individual correlations with one another, possibly attributable
to a general effect of tooth size (Sofaer et al., 1972). Also, despite higher MZ
values, 100% concordance in MZ twins was rarely reached in an examination of
26 minor variants of the dental crown (Kaul et al., 1985). Parent–offspring and
sib correlations demonstrated genetic control over the frequency of expression
of 20 tooth crown traits (Scott, 1973).

Heritability estimated from parent–offspring correlation showed that about
68% of maxillary incisor shovel shape variation could be explained by additive
genetic effects (Blanco and Chakraborty, 1976). A sibship analysis found the
frequency of shoveling to be higher among the sibs of affected persons than
among randomly sampled sibs from the study population, also showing that the
character is heritable (Portin and Alvesalo, 1974).

The genetic contributions to metaconule expression were also explored; esti-
mates of the additive genetic component were found to be 65% for the first
molar, but only 15% for the second (Harris and Bailit, 1980).

14.4.4 Asymmetry

Biggerstaff, in his analysis of Carabelli’s cusp (1973) and concordance of
mandibular molar cusp size between twins (1970), noted that concordance dif-
fered enough between antimeres to suggest separate genetic factors for each
side of the dentition. This observation and conclusion is remarkable in that it
contradicts the bilateral symmetry commonly assumed to be inherent to the
dentition (and vertebrate bodies in general).

During the 1950s–1970s considerable research was designed to test whether
or not genetic influences could explain dental asymmetry. The results from these
studies were mixed. Support for a genetic influence was found when comparing
individual teeth and tooth-width sums, although a greater non-genetic influence
was observed in the former (Lundström, 1967). An investigation of permanent
mandibular first molar and first and second premolars in MZ and DZ twins and
non-twins found greater bilateral asymmetry in MZ twins for the seventh cusp
of the first molar, but equal asymmetry in MZ and DZ twins for hypoconulid
occurrence and premolar cusp number; this suggests a mixed amount of genetic
influence (Staley and Green, 1971). Additional work, in which a distinction
was made between measurements of discordance, bilateral asymmetry, and
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mirror imaging in comparing variance ratios for dimensions of the permanent
dentition, showed no sign of a genetic component (Potter and Nance, 1976).
A population study of Mexican and Belizean groups found little asymmetry
and high correlations between each side of the dentition for a set of discrete
dental traits; these findings lead to the conclusion that similar genetic factors
may exist for both sides, and that environmental factors may play a significant
role in asymmetry (Baume and Crawford, 1980). In a study done to establish
dental asymmetry as an indicator of genetic and environmental conditions of
human populations, non-significant heritability estimates that ranged between
2–5% suggested a low component of additive genetic variance for fluctuating
asymmetry (Bailit et al., 1970).

Although genetic factors have not been ruled out in the case of asymmetry,
the twin and population data from this period are inconclusive and suggest, if
anything, a large environmental influence. For the current status of this debate
see Leamy et al. (2000, 2005).

14.4.5 Development

During this time, several studies also looked at genetic control of tooth devel-
opment. Family line analysis (Garn et al., 1960) and sibling correlation studies
(Garn et al., 1965a; Merwin and Harris, 1998) assessed the genetic influence on
the tempo of tooth growth and mineralization. Strong genetic control was indi-
cated by a heritability of 0.82 calculated from intra-class correlations between
full siblings (Merwin and Harris, 1998).

14.4.6 Sex effects

Sex effects on tooth size were also reported. In comparing the size of the per-
manent teeth in like- and unlike-sexed siblings, X-chromosomal linkage was
suggested by sister–sister correlations that exceeded brother–brother correla-
tions, which in turn exceeded sister–brother correlations (Garn et al., 1965b;
Lewis and Grainger, 1967). Other sibling correlation studies also suggested
genetic control over sexual dimorphism in tooth size (Garn et al., 1967). How-
ever, several population studies comparing sib correlations for tooth size did
not show evidence for the presence of sex-linked genes (Niswander and Chung,
1965; Townsend and Brown, 1978a). Investigations of tooth size inheritance in
non-human primates used sib correlations from a captive macaque population
to test the hypothesis of X-chromosome mediation, but instead found support
for involvement of the Y-chromosome (Sirianni and Swindler, 1973, 1974).
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14.4.7 Maternal effects

Both maternal and gestational factors were found to influence crown dimen-
sions. Relatively high mother–offspring correlations were interpreted as a sign
of environmental effects associated with the mother (Goose, 1967). Prolonged
gestation, high birth weight and length, and maternal hypothyroidism and dia-
betes were associated with an increase in tooth size, while short gestation,
lower birth weight and length, and maternal hypertension were associated with
decreased crown dimensions (Garn et al., 1980). An analysis of covariance
done to determine whether maternal effects influence the development of the
permanent dentition showed that dental development is significantly different
between families after adjustment for maternal age, birth order, and birth weight
(Bailit and Sung, 1968). A cross-fostering experiment between inbred strains
of the house mouse that analyzed the prenatal and postnatal maternal environ-
mental effects on molar size variation indicated a non-genetic prenatal factor,
as well as strain-specific genetic determinants for the second molar; however,
there was little prenatal environment intra-strain influence on the third molar
(Tenczar and Bader, 1966).

14.4.8 Dental variation diagnosis of twin zygosity

The high degree of concordance between MZ twins in crown morphology,
presence of Carabelli’s trait, and molar cusp number proved to be useful for
diagnosing zygosity (Townsend et al., 1988; Wood and Green, 1969), compara-
ble to that of other phenotypes such as fingerprints and blood grouping (Kraus
et al., 1959). One twin study showed that concordance comparisons across the
entire dentition were able to diagnose zygosity accurately approximately 94%
of the time (Lundström, 1963).

14.5 The later years (1970s–1980s)

In the late 1970s, statistical analyses of twin and familial data progressed beyond
the simple concordance and correlation techniques employed in the previous
decades, as exemplified by the multivariate work by Potter et al. (1976). Using
this method, within-pair difference covariance matrices were created for each
twin type, suggesting that a greater number of genetic factors were influencing
mandibular tooth size. In addition to a supposed independence of the mandibular
and maxillary dentition, separate factors were indicated for mesiodistal and
buccolingual dimensions, in contrast to what appeared to be shared genetic
determinants for antimeres (Potter et al., 1976, 1978).
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The early 1980s saw the introduction of complex segregation analysis into
dental genetics, facilitating the identification of genetic and common envi-
ronmental influences on Carabelli’s trait (Kolakowski et al., 1980) and tooth
dimensions (Kolakowski and Bailit, 1981) from sibling and parent-offspring
data. Path analysis was first utilized to investigate the influence of small crown
characters on tooth dimension and shoveling (Mizoguchi, 1978). In a later study,
path analysis modeling detected environmental variance components respon-
sible for sibling correlation in mesiodistal measurements of the upper left per-
manent first molar and lateral incisor (Potter et al., 1983). A study combining
complex segregation analysis of morphological traits and path analysis of tooth
size measurements identified roles for both genetic and environmental factors
(Nichol, 1990).

In 1979, an attempt to find any association of twin zygosity with tooth size
indicated that an important assumption of the twin model, environmental vari-
ance equality, had been violated, prompting a refinement of the statistical testing
used in later studies (Potter et al., 1979). The finding that variances were not
necessarily homogenous across twin types suggested the existence of unequal
environmental influences, and bias in previous estimates of variance and her-
itability from studies in which heterogeneity had not been assessed (reviewed
in the previous section). Additionally, Potter et al.’s (1979) study indicated that
among-pair sex differences existed for MZ and DZ mean squares, a confounding
factor for variance heterogeneity.

The direct result of this restatement of the twin model and its assumptions was
the incorporation of sex differences, mean equality, variance heterogeneity, and
environmental equality tests into subsequent studies of occlusal variation using
multivariate and principal component analyses to investigate trait interactions.
After environmental inequalities and MZ–DZ mean differences were accounted
for, an overall average heritability for occlusal traits was estimated as 0.25,
reflecting biases that had gone undetected in prior studies of occlusion and
the large environmental influence on variance (Corruccini and Potter, 1980). A
subsequent analysis of size, asymmetry, and occlusion in the permanent first
molar found heritable components for only the lower molars, averaging 0.62 (in
contrast to 0.09 for the upper molars) and non-significant genetic components
for asymmetry and occlusal discrepancy (although the latter tended to be higher)
(Corruccini and Potter, 1981). A general conclusion from the occlusal variance
studies from this period indicated a greater environmental than genetic influence
on the traits examined (Corruccini and Potter, 1980, 1981; Potter et al., 1981).

Investigators of tooth dimension also adopted the refined twin study proto-
col. A comparison of American and Punjabi MZ and DZ twin pairs yielded an
average heritability estimate of 0.73 for tooth size, and when not invalidated by
environmental covariance inequality, mesiodistal and buccolingual dimensions
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of individual teeth in the Punjabi twin population were used to derive heri-
tability estimates that ranged from 0.26 to 0.72 after correction for variance
heterogeneity (Corruccini and Sharma, 1985; Sharma, et al., 1985). The size
of the maxillary right lateral incisor was found to have a significant heritability
estimate of 0.42 (Townsend et al., 1986), and heritabilities of mesiodistal tooth
dimensions ranged from 0.64 to 0.88, and 0.10 to 0.60 for buccolingual dimen-
sions when calculated using multiple estimation methods (Harzer, 1987). In
addition to the more informative narrow-sense heritability estimates provided
in these studies, the use of more sophisticated statistical analyses elucidated
specific patterns of heritability within the dentition. Summation of dimensions
for tooth groups yielded the highest estimates, which was interpreted as an indi-
cator of greater genetic control over tooth groups compared to individual teeth
(Harzer, 1987, 1995). Also demonstrated was a general decrease in heritability
from anterior to posterior teeth in the upper jaw, a pattern not observed in the
mandible (Harzer, 1987, 1995).

14.6 Today (1990s–present)

Following the revisions and elaborations of statistical methods in the 1970s and
1980s, several novel study designs were introduced. A new dimension to den-
tal twin studies was added by the use of twins reared apart in an investigation
of caries experience, occlusion, and tooth morphology (Boraas et al., 1988).
Another original approach to estimating environmental and genetic effects used
the offspring of MZ twins and their spouses to perform analyses of variance
only possible in half-sib design studies, allowing for detection of common envi-
ronmental influences, maternal effects, and assortative mating (Potter, 1990).

Studies in the 1990s also introduced the use of statistical software to gener-
ate various models representing the genetic and environmental factors involved
in the dentition. Once generated, the best fitting model was determined using
maximum-likelihood methods and chi-square testing. Using the LISREL soft-
ware package and PRELIS pre-processor, it was determined that the best model
for explaining variation in the Carabelli trait on the permanent maxillary first
molar was comprised of additive genetic effects, a general environmental factor,
and an environmental component specific to each side; this produced a heri-
tability estimate of 0.94 for the left molar and 0.86 for the right (Townsend and
Martin, 1992). More conservative estimates for the Carabelli trait, 0.51 for the
right and 0.37 for the left, and for tooth size, 0.60, were calculated after observ-
ing possible non-additive genetic effects and overall variance heterogeneity in
11 of 56 variables (Townsend et al., 1992).

Multivariate model-fitting analyses (in which progressively more compli-
cated models were fit to data, beginning with a model incorporating unique
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environmental influences only, followed by a model including unique environ-
mental and additive genetic factors, and eventually non-additive and common
environmental factors) showed that the majority of the variation observed in
incisor crown size could be accounted for by unique environmental and addi-
tive genetic effects alone (Dempsey et al., 1995). Also noted was a general
genetic factor influencing all incisors, specific genetic factors for each pair of
antimeric teeth, and unique environmental factors specific to each tooth, as well
as the entire group of incisors. An average heritability estimate of 0.86 was in
agreement with the large amount of additive genetic variance illustrated in this
model (Dempsey et al., 1995). Using similar statistical analyses, the best fitting
model describing variance components of dental maturation in twins was found
to incorporate additive genetic, and both unique and common environmental
factors. The additive genetic component accounted for 43% of the total vari-
ance, while approximately half was attributed to the common environment, a
reflection of the twins’ shared prenatal, natal and postnatal circumstances of
tooth maturation (Pelsmaekers et al., 1997).

The more recent quantitative genetic dental research has investigated the
covariance structure of dimensions of the deciduous teeth for signs of genotype
by environment interaction or directional dominance, and found evidence for
neither; the conclusion was that a model incorporating only additive genetic
(ranging from 62–91%) and unique environmental components of variance
sufficiently explains the total variance in all teeth except for the lower central
incisor in females (Hughes et al., 2000). When similar methods were applied
to crown size of permanent teeth, in the absence of genotype by environmental
interaction or assortative mating, a model incorporating additive genetic and
unique environmental factors was adequate for all but two teeth: the maxil-
lary left central incisor and right canine, for which introducing non-additive
genetic or common environmental factors into the model provided a better fit.
The lowest heritability estimates were associated with the mesiodistal length
of the maxillary first molar, 0.50–0.60, and the highest with the buccolingual
breadth of the maxillary premolars, 0.90, illustrating that no consistent pattern
could be assigned to the observed heritabilities (Dempsey and Townsend, 2001).
Additive genetic and unique environmental models were also fitted to crown
measurements with inter-cuspal dimensions, producing higher heritability esti-
mates for crown size than for inter-cuspal distances (Townsend et al., 2003).

14.7 From heritability estimation to redefining the phenotype

All of the quantitative genetics research on primate dental variation to date
demonstrates that the size and shape of teeth are influenced significantly by the
additive effects of genes. Therefore, the assumptions inherent to the adaptive and
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phylogenetic interpretations noted at the beginning of this chapter are merited.
However, it is probably clear to the reader at this point that heritability estimates
by themselves, once demonstrated, are rather limited in what they can tell us
about the genetic architecture of the dentition. Each estimate is specific to
the population studied, and given the variety of analytical approaches, direct
comparisons of heritability point estimates are somewhat meaningless. Have
we hit a brick wall with quantitative genetic approaches? Is this all that we can
learn from these types of analyses?

We argue that the answer to both questions is a resounding “no.” The future
for quantitative genetic analyses of dental variation will witness significant
new insights into primate tooth biology primarily through two directions:
quantitative trait locus (QTL)/linkage analyses and the estimation of genetic
correlations.

14.7.1 Quantitative genetics and “evo-devo”

Advances in developmental genetics over the last 20 years have shown that
genes operate through a series of complex spatial and temporal interactions to
form the phenotype, and patterned phenotypes often reflect spatial and temporal
relationships between functioning genomic regions. For example, the number
and morphology of vertebrae in an organism correspond to the patterned expres-
sion of members of the Hox gene family, a pattern that is highly conserved across
vertebrate taxa (Carroll et al., 2005; Galis, 1999).

Another example is the paired vertebrate appendages (i.e. limbs) that result
from a different cascade of patterned and overlapping Hox gene expressions
(Carroll et al., 2005; Shubin, 2002). Shubin et al. (1997) and Shubin (2002)
argue that the origin of digits in tetrapods during the Devonian may well corre-
spond to a duplication event of part of the Hox gene family to form a third phase
of expression during limb development. The fossil record, therefore, provides
significant insight into when, and in what types of environments and selective
regimes, novel morphologies (such as digits) arose – providing the proverbial
“evo” to studies of “devo” (evolutionary developmental genetics).

The dentition provides a similar opportunity to understand morphological
evolution from an integrated geno- and phenotypic perspective. Teeth preserve
well in the fossil record due to a largely inorganic content that makes them
very hard. As is seen in most vertebrate lineages, the mammalian fossil record
is dominated by teeth, with many taxa known only by their dentitions. These
fossils record information about the evolving genotype as selection operated
on the phenotype. A significant barrier, however, is deciphering what these
morphological changes represent in terms of the underlying genetics.
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Quantitative genetics provides an important opportunity for unlocking this
information. Our current understanding of tooth developmental genetics derives
almost exclusively from rodent models, and addresses two fundamental ques-
tions – how is the overall dental pattern determined (i.e. incisors vs. molars),
and how is the morphology of an individual tooth determined. Tooth develop-
mental genetics is beyond the scope of this chapter and we refer the reader to
several excellent reviews for more information (Jernvall and Thesleff, 2000;
Stock, 2001; Tucker and Sharpe, 2004; Weiss, et al., 1998).

As is commonly recognized, the genes necessary to form an organ are not
necessarily the same ones that code for its minor phenotypic variation. From
the perspective of a mammalian paleontologist, the mechanisms that underlie
the variation upon which natural selection typically operates (population level
variation) are of more critical concern. One way to obtain genetic information
about minor phenotypic variation is to work from the phenotype back toward
the genome. Quantitative genetic analyses provide such an approach.

14.7.2 QTL analyses

Gene-mapping techniques have been extremely useful in identifying genes that
underlie genetic disorders, such as hemophilia (Lawn, 1985) and cystic fibrosis
(Drumm and Collins, 1993). It is now possible to use these same techniques
to study the genetic basis of polygenic traits, such as tooth size. There are two
techniques that fall under the umbrella of QTL analyses. The first is a candidate
gene approach, in which genetic variation at or near a known gene is tested for
association with particular phenotypic variants. The second, and perhaps more
relevant, approach to this discussion are quantitative trait loci (QTL) analyses,
in which individual genes of small phenotypic effect are identified. This latter
approach does not require a priori knowledge of gene function, and enables
the identification of previously unknown genes that influence the phenotype of
interest. Cheverud and Routman (1993) provide a nice overview.

Cheverud, Routman, and colleagues have also performed the majority of
published QTL analyses on dental variation to date. By crossing two inbred
strains of mice, one large and one small, and comparing the association of
genetic marker alleles with morphological variation in the F2 generation, they
identified more QTL for molar shape than size, as well as dominance effects
for both (Workman et al., 2002). This may indicate that the genetic basis for
molar size is simpler than that for shape. Additionally, they did not find any
differences in the effects of the shape QTL between the three molars, suggesting
that these are not distinct developmental structures (Workman et al., 2002). A
similar study analyzed mandibular size and shape, through which 12 QTL
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were identified as significantly influencing size and 25 QTL affecting shape
(Klingenberg et al., 2001).

14.7.3 Morphological integration and modularity

Aside from providing information about the chromosomal locations of genes
that influence mouse molar variation, these analyses also yield information
about the inter-relatedness of various teeth. The lack of difference in the asso-
ciated QTL for the first, second, and third molars indicates that variation in the
size and shape of these structures is influenced by the same genetic effects, or
rather, that these three molars are affected by complete pleiotropy. Pleiotropy
underlies much of the rationale for the concept of morphological integration.

This concept was first introduced by Olson and Miller (1959) and revived
by Cheverud (1982, 1989, 1995, 1996; Cheverud et al., 1983; Marroig et al.,
2004). Morphological integration is the idea that phenotypic traits will be tightly
correlated when they share a common developmental pathway and/or ultimate
function. As such, individual morphological traits can be conceptualized as parts
of sets. Identification of these integrated units is based on phenotypic correla-
tions that have been shown to correspond to genetic correlations (Cheverud,
1988; Cheverud et al., 1997; Ehrich, et al., 2003; Klingenberg et al., 2001;
Leamy et al., 1999; Mezey et al., 2000). Quantitative genetic models argue that
these heritable patterns of variation may be stable over reasonably long periods
of evolutionary time (Lande, 1979, 1980).

Morphological integration is thought to reflect developmental and molecular
modularity. Developmental genetics shows that organisms have morphological
and developmental modularity that results from modules at the genomic level,
such as gene families (Carroll et al., 2005; Stern 2000; von Dassow et al.,
2000; Weiss, 1990), and from modules in embryogenesis (Raff, 1996). This
modularity has been defined as “a genotype-phenotypic map in which there
are a few pleiotropic effects among characters serving different functions, with
pleiotropic effects falling mainly among characters that are part of a single
functional complex” (Wagner and Altenberg, 1996, p. 967). This modularity is
critical since it enables an organism to be “evolvable” (Wagner and Altenberg,
1996).

Integration is, of course, a matter of degree (Lewontin, 2001; Magwene,
2001). An organism is itself an integrated unit, otherwise it could not function
properly. However, it is obvious that an organism is comprised of sub-units
that work together to form a whole. Therefore, morphological integration and
modularity are hierarchical, though somewhat arbitrary, and can be investigated
at multiple levels.
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Although the dentition is in a sense its own module, given the hierarchical
nature of its development (Bateson, 1892; Stock, 2001), there is also modularity
within the dentition. Quantitative genetic analyses, through the estimation of
genetic correlations, are further elucidating such modules. This is the level
of modularity often thought to be represented by characters in paleontological
analyses, especially those at the sub-family level or below (Hlusko, 2004; Peyer,
1968; Swindler, 2002).

14.7.4 Redefining dental phenotypes

We are using quantitative genetic analyses to identify shared genetic effects on
the dental variation of a captive pedigreed baboon colony (Hlusko et al., 2002,
2004a, 2004b, in press a, in press b; Hlusko and Mahaney, 2003). Our goal is to
reveal the genetic architecture that underlies primate dental variation. This is a
meticulous process, as we first test for genetic correlations between all possible
dental phenotype pairs. When a genetic correlation is estimated, we then test
the extent of this correlation – is it 100%, indicating complete pleiotropy?
Or is it lower, indicative of incomplete pleiotropy? Through this process, we
are identifying phenotypes that represent the same genetic effects, phenotypes
that have overlapping, but not identical, genetic effects, and phenotypes that
are genetically independent. This knowledge enables the redefinition of the
dentition based on the underlying genetic architecture.

For example, we have found complete pleiotropy for antimeres of all phe-
notypes studied to date, including linear metrics (Hlusko, 2000), morphologi-
cal traits (Hlusko and Mahaney, 2003), loph/lophid orientation (Hlusko et al.,
2004b), and 2D areas (Hlusko et al., in press b). There is evidence for incom-
plete pleiotropy between the maxillary and mandibular arches (Hlusko, 2000;
Hlusko and Mahaney, 2003). We have also found significant genetic correla-
tions between molar crown size and crown–rump length (body size) (Hlusko
et al., in press a).

As evidence for genetic correlations improves our understanding of morpho-
logical evolution, estimates of no genetic correlation can also be informative,
although this must be done with caution. For example, we have performed
a quantitative genetic analysis of enamel thickness in baboons as a model
for understanding the genetic architecture of this phenotype in other pri-
mates, including humans (Hlusko et al., 2004b). Hominid paleontologists have
emphasized the importance of enamel thickness for decades, starting with
“Ramapithecus” (Simons and Pilbeam, 1972), and more recently in the iden-
tification of newly recovered late Miocene hominids (Andrews, 1995; Brunet
et al., 2002; Leakey et al., 1995; Senut et al., 2001; White et al., 1995). Genetic



334 O. T. Rizk et al.

analyses of linear measurements of radial molar enamel thickness in this popula-
tion of pedigreed baboons indicate that enamel thickness is heritable. However,
interestingly, it is not genetically correlated with either sex or tooth size. This
result suggests that enamel thickness could evolve rapidly through evolutionary
time, tracking dietary shifts, and increasing the likelihood for homoplasy in this
character.

We are also using these tests of genetic correlation to redefine the dental
phenotype. Although much of this work is still in progress, we have reported
results that demonstrate a genetic modularity that does not correspond with
developmental modules. The orientation of mesial molar lophids is affected
by complete pleiotropy along the tooth row, as is the orientation of the distal
lophids. However, the mesial and distal lophids are found to be genetically
independent (represented in Figure 14.2). As Workman et al. (2002) interpreted
the mouse molar series to be indicative of the same genetic factors, baboon
molars are similarly reflexive of the same genetic effects. However, the mesial
and distal portions of the molar crown are independent of each other in terms of
the orientation of the lophids, suggesting a level of modularity that cuts across
the developmental module of a tooth.

Another dental phenotype studied in this population of pedigreed baboons
also contributes new information about modularity, although the results are more
difficult to reconcile with developmental genetics at this point in time. 2D molar
cusp area appears to vary taxonomically in primates, although the majority of
research to date has focused on extant and extinct hominoids (e.g. Bailey 2004;
Corruccini, 1977; Erdbrink 1967; Hills et al. 1983; Kondo and Townsend, 2006;
Macho, 1994; Sperber, 1974; Suwa et al., 1994, 1996; Uchida 1998a, 1998b;
Wood and Engleman 1988; Wood et al., 1983). We undertook a quantitative
genetic analysis of variation in this phenotype in this pedigreed population
of baboons (Hlusko et al., in press b). Our results show that while variation
in cusp size is heritable and sexually dimorphic, there are interesting patterns
of genetic correlation between the various cusps. For the first, second, and
third mandibular molars the metaconid-hypoconid correlation is consistently
estimated as 0.0, whereas the entoconid-protoconid correlation is estimated as
1.0. The other cusp pairs demonstrate incomplete pleiotropy. This diagonal
pattern of complete and no genetic correlation counters what we currently
know about tooth development and mineralization. We are now collecting data
on maxillary molars in baboons and molar cusp area, in general, for mice in an
attempt to clarify this conundrum.

Considerably more research is needed to determine whether or not the mod-
ularity identified through quantitative genetic analyses of mouse and baboon
dental variation is also present in other primates. However, the approach looks
promising. A similar analysis of cranial variation in New World monkeys has
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Figure 14.2 Baboon mandible in occlusal view. Quantitative genetic analyses have
shown that first, second and third molar mesial lophid orientation (A) along the tooth
row is determined by the same genetic effects, as is distal lophid orientation (B).
However, the orientations of A and B on the same crown are genetically independent
(Hlusko et al., 2004a). See text for more details.

found that the genetic architecture appears to be conserved across taxa that
diverged 30 million years ago (Marroig and Cheverud, 2005). Given that this
cranial study relied on phenotypes with lower heritabilities than those of the
dentition, we feel confident that the approach described herein for the dentition
will yield informative results. If our initial results are bolstered through further
analyses, these newly defined phenotypes will enable us to study dental vari-
ation in fossil taxa with a better understanding of what those morphological
changes represent in terms of the evolving genotype, enabling us to reconstruct
a genetic evolutionary history of the primate dentition (Hlusko, 2004).
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14.8 Conclusions

The past 80 years have witnessed a revolution in quantitative genetic approaches
to primate dental variation. What started out as a simple question concerning
the presence or absence of a genetic contribution to population-level variation
has diversified into fairly detailed questions of genetic correlation and gene
mapping. Through all of this we have gained tremendous insight to the genetic
architecture of primate dental variation. Virtually all tooth size and shape vari-
ation is heritable, with most estimates attributing a large portion of the variance
to the additive effects of genes. Variation in occlusion, arch shape, and crowding
appears to result primarily from non-genetic influences. Dominance, sex, and
maternal effects have also been identified. Researchers have found evidence
for differing genetic factors for anterior vs. posterior tooth types, and future
research estimating genetic correlations promise to refine these propositions.
We find two research directions particularly compelling at this point: (1) QTL
analyses that are identifying specific chromosomal loci that have phenotypic
effects, and (2) estimation of genetic correlations that are elucidating evolution-
ary modularity. The application of quantitative genetics to dental anthropology
may just now be entering its heyday with much promise for the future.
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